Background: MRI is the modality of choice for cartilage imaging; however, its diagnostic performance is variable and significantly lower than the gold standard diagnostic knee arthroscopy. In recent years, deep learning has been used to automatically interpret medical images to improve diagnostic accuracy and speed. Purpose: The primary purpose of this study was to evaluate whether deep learning applied to the interpretation of knee MRI images can be utilized to identify cartilage defects accurately. Methods: We analyzed data from patients who underwent knee MRI evaluation and consequently had arthroscopic knee surgery (207 with cartilage defect, 90 without cartilage defect). Patients' arthroscopic findings were compared to preoperative MRI images to verify the presence or absence of isolated tibiofemoral cartilage defects. We developed three convolutional neural networks (CNNs) to analyze the MRI images and implemented image-specific saliency maps to visualize the CNNs' decision-making process. To compare the CNNs' performance against human interpretation, the same test dataset images were provided to an experienced orthopaedic surgeon and an orthopaedic resident. Results: Saliency maps demonstrated that the CNNs learned to focus on the clinically relevant areas of the tibiofemoral articular cartilage on MRI images during the decision-making processes. One CNN achieved higher performance than the orthopaedic surgeon, with two more accurate diagnoses made by the CNN. All the CNNs outperformed the orthopaedic resident. Conclusion: CNN can be used to enhance the diagnostic performance of MRI in identifying isolated tibiofemoral cartilage defects and may replace diagnostic knee arthroscopy in certain cases in the future.
翻译:目标:本项研究的主要目的是评估对膝盖的解读应用深度学习是否可用来准确辨别软骨缺陷。方法:我们分析了从接受膝盖MRI评价并因此进行动脉膝部手术(207有软骨缺陷,90没有软骨缺陷)的病人获得的数据。 病人的心肌梗塞检测结果与早期的心肺动诊断图像相比较,以核实是否存在孤立的硬骨质骨骼缺陷。我们开发了三个革命神经网络,以分析磁心机图像,并实施了针对图像的突出图解图解,以图解CNN的决策过程。为了对照人类解读,我们向有经验的矫形外科外科医生和矫形住院医生提供了同样的测试数据集。结果:SAL-RI图像比较了诊断性能的偏僻性,在IMIS的临床分析中,通过SAL-IML图像的精密性能,提高了IMIS的精密性能。在IMIMIMIM的临床分析中,通过S-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-IL-IL-I-I-IL-I-I-I-I-I-I-I-I-I-I-IL-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-L-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I