Misinformation has become a growing issue on online social platforms (OSPs), especially during elections or pandemics. To combat this, OSPs have implemented various policies, such as tagging, to notify users about potentially misleading information. However, these policies are often transparent and therefore susceptible to being exploited by content creators, who may not be willing to invest effort into producing authentic content, causing the viral spread of misinformation. Instead of mitigating the reach of existing misinformation, this work focuses on a solution of prevention, aiming to stop the spread of misinformation before it has a chance to gain momentum. We propose a Bayesian persuaded branching process ($\operatorname{BP}^2$) to model the strategic interactions among the OSP, the content creator, and the user. The misinformation spread on OSP is modeled by a multi-type branching process, where users' positive and negative comments influence the misinformation spreading. Using a Lagrangian induced by Bayesian plausibility, we characterize the OSP's optimal policy under the perfect Bayesian equilibrium. The convexity of the Lagrangian implies that the OSP's optimal policy is simply the fully informative tagging policy: revealing the content's accuracy to the user. Such a tagging policy solicits the best effort from the content creator in reducing misinformation, even though the OSP exerts no direct control over the content creator. We corroborate our findings using numerical simulations.


翻译:虚假信息在在线社交平台(OSPs)上已成为一个不断增长的问题,尤其是在选举或流行病期间。为了应对此问题,OSPs实施了各种政策,如标签,以通知用户可能存在的误导信息。然而,这些政策通常是透明的,因此容易被内容创作者利用,他们可能不愿意投入精力来制作真实的内容,从而引起虚假信息的病毒式传播。本文不是仅仅减少现有虚假信息的传播范围,而是着眼于预防解决方案,旨在在虚假信息有机会获得势头之前阻止其传播。我们提出了一个贝叶斯有利分支过程 ($\operatorname{BP}^2$) 来模拟 OSP、内容创作者和用户之间的策略互动。 OSP 上的虚假信息传播由多类型分支过程模拟,其中用户的正/负评论会影响虚假信息的传播。我们运用贝叶斯概率的拉格朗日量对着陆 OSP 的最优策略进行特征化,通过完美贝叶斯均衡来求解。拉格朗日量的凸性意味着 OSP 的最优策略只是全信息标记策略:向用户透露内容的准确性。虽然 OSP 对内容创作者没有直接控制力,使用这种标记策略会促使内容创作者在减少虚假信息方面尽最大的努力。我们使用数值模拟验证了我们的研究发现。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月2日
Arxiv
0+阅读 · 2023年6月1日
Arxiv
0+阅读 · 2023年5月31日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员