Target encoding is an effective encoding technique of categorical variables and is often used in machine learning systems for processing tabular data sets with mixed numeric and categorical variables. Recently en enhanced version of this encoding technique was proposed by using conjugate Bayesian modeling. This paper presents a further development of Bayesian encoding method by using sampling techniques, which helps in extracting information from intra-category distribution of the target variable, improves generalization and reduces target leakage.


翻译:目标编码是绝对变量的有效编码技术,经常用于机器学习系统,用于处理具有混合数字和绝对变量的表格数据集。最近,通过使用同源贝叶斯模型,提出了这一编码技术的强化版本。本文介绍了通过抽样技术进一步开发贝叶斯编码方法,这有助于从目标变量的类别内分布中提取信息,改进了一般化,减少了目标渗漏。

0
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
249+阅读 · 2020年5月18日
《迁移学习简明手册》,93页pdf
专知会员服务
136+阅读 · 2019年12月9日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月12日
Cantor Mapping Technique
Arxiv
0+阅读 · 2021年1月8日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
Learning From Positive and Unlabeled Data: A Survey
Arxiv
5+阅读 · 2018年11月12日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关VIP内容
多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
249+阅读 · 2020年5月18日
《迁移学习简明手册》,93页pdf
专知会员服务
136+阅读 · 2019年12月9日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年1月12日
Cantor Mapping Technique
Arxiv
0+阅读 · 2021年1月8日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
Learning From Positive and Unlabeled Data: A Survey
Arxiv
5+阅读 · 2018年11月12日
Arxiv
151+阅读 · 2017年8月1日
Top
微信扫码咨询专知VIP会员