A randomized algorithm for computing a compressed representation of a given rank structured matrix $A \in \mathbb{R}^{N\times N}$ is presented. The algorithm interacts with $A$ only through its action on vectors. Specifically, it draws two tall thin matrices $\Omega,\,\Psi \in \mathbb{R}^{N\times s}$ from a suitable distribution, and then reconstructs $A$ by analyzing the matrices $A\Omega$ and $A^{*}\Psi$. For the specific case of a "Hierarchically Block Separable (HBS)" matrix (a.k.a. Hierarchically Semi-Separable matrix) of block rank $k$, the number of samples $s$ required satisfies $s = O(k)$, with $s \approx 3k$ being a typical scaling. While a number of randomized algorithms for compressing rank structured matrices have previously been published, the current algorithm appears to be the first that is both of truly linear complexity (no $N\log(N)$ factors) and fully black-box in nature (in the sense that no matrix entry evaluation is required).
翻译:使用随机算法来计算某个等级结构化矩阵的压缩代表 $A $A\ in\ mathbb{R\\N\time N} $。 该算法仅通过其对矢量的动作与$A 进行互动。 具体地说, 它从合适的分布中抽取两个高的薄矩阵$\ Omega,\\\\ Psi\ in\ mathbb{R\N\times s} $, 然后通过分析矩阵 $A\ Omega$ 和 $A ⁇ Psi$ 来重建$A$。 对于“ 等级结构化( HBS) ) 矩阵的具体案例( a. k.a. 。 等级为块级 $k$的等级半可分离矩阵) 。 需要的样本数量满足$s = O( k) $, 而 3k$ 是典型的缩放量。 虽然用于压缩级结构矩阵的随机化算法数此前已经公布, 目前的算法似乎是第一个既具有真正线性复杂性的输入( $N\box- box) exin exin exin exin expressin exin exin exin exin exin exin exin exin exin 需要完全 exin 需要 exin exin ex exin exin exin exin exin exin exin exin exin exin exin exin exin exin exin exin exin) exin exin (n) exin exin exin exin) exin exin) exin (n) exvi exin exin exin exal) exin) exin) exin exin expl) explus exportal (n) export) export) exinal) exual exinal exin ex