The high energy costs of neural network training and inference led to the use of acceleration hardware such as GPUs and TPUs. While this enabled us to train large-scale neural networks in datacenters and deploy them on edge devices, the focus so far is on average-case performance. In this work, we introduce a novel threat vector against neural networks whose energy consumption or decision latency are critical. We show how adversaries can exploit carefully crafted $\boldsymbol{sponge}~\boldsymbol{examples}$, which are inputs designed to maximise energy consumption and latency. We mount two variants of this attack on established vision and language models, increasing energy consumption by a factor of 10 to 200. Our attacks can also be used to delay decisions where a network has critical real-time performance, such as in perception for autonomous vehicles. We demonstrate the portability of our malicious inputs across CPUs and a variety of hardware accelerator chips including GPUs, and an ASIC simulator. We conclude by proposing a defense strategy which mitigates our attack by shifting the analysis of energy consumption in hardware from an average-case to a worst-case perspective.
翻译:神经网络培训和推断的高能源成本导致使用GPU和TPU等加速硬件。 虽然这使我们能够在数据中心和边缘设备中培训大型神经网络,并将这些网络部署到边缘设备上,但迄今为止的焦点是平均性能。 在这项工作中,我们引入了对神经网络的新颖威胁矢量,这些神经网络的能源消耗或决定耐久性至关重要。我们展示对手如何利用精心制造的$\boldsybol{sgape ⁇ boldsymbol{examples}$,这是旨在最大限度地增加能源消耗和耐久性的投入。我们把这次攻击的两种变体放在既定的视觉和语言模型上,将能源消耗增加10至200倍。我们的攻击也可以用来拖延一个网络具有关键实时性能的决策,例如对自主车辆的认知。我们展示了我们的恶意投入在CPU和包括GPUs在内的各种硬件加速器芯片以及ASIC模拟器的可移动性。我们最后提出一个防御战略,通过将一个平均的能源消费角度从一个角度转移到一个平均的硬件的分析来减轻攻击。