Embodied Instruction Following (EIF) studies how mobile manipulator robots should be controlled to accomplish long-horizon tasks specified by natural language instructions. While most research on EIF are conducted in simulators, the ultimate goal of the field is to deploy the agents in real life. As such, it is important to minimize the data cost required for training an agent, to help the transition from sim to real. However, many studies only focus on the performance and overlook the data cost -- modules that require separate training on extra data are often introduced without a consideration on deployability. In this work, we propose FILM++ which extends the existing work FILM with modifications that do not require extra data. While all data-driven modules are kept constant, FILM++ more than doubles FILM's performance. Furthermore, we propose Prompter, which replaces FILM++'s semantic search module with language model prompting. Unlike FILM++'s implementation that requires training on extra sets of data, no training is needed for our prompting based implementation while achieving better or at least comparable performance. Prompter achieves 42.64% and 45.72% on the ALFRED benchmark with high-level instructions only and with step-by-step instructions, respectively, outperforming the previous state of the art by 6.57% and 10.31%.


翻译:继(EIF)研究后,研究如何控制移动操纵机器人,以完成自然语言指令规定的长半径任务。虽然大多数关于EIF的研究都是在模拟器中进行的,但实地的最终目的是在现实生活中部署代理人。因此,必须尽量减少培训代理人所需的数据成本,以帮助从模拟向真实的过渡。然而,许多研究只侧重于性能,忽视数据成本 -- -- 通常不考虑是否可部署性就引入需要额外数据单独培训的模块。在这项工作中,我们提议胶片+,扩大现有工作胶片的修改不需要额外数据。虽然所有数据驱动的模块都保持不变,胶片++多于双倍胶片性能。此外,我们提议“催动器”,用语言模型来取代胶片+的语气搜索模块,帮助从模拟向真实过渡。与胶片+的安装需要额外数据集培训的情况不同,不需要培训来加快我们的执行,同时实现更好或最起码可比的性能。更快速地实现了42.64%和45.72 %的ALFREARD标准,仅以高水平指示为前10级标准。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2022年12月27日
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
Arxiv
15+阅读 · 2019年6月25日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员