The Smart Grid System (SGS) is a joint network comprising the power and the communication network. In this paper, the underlying intra-and-interdependencies between entities for a given SGS is captured using a dependency model called Modified Implicative Interdependency Model (MIIM) [1]. Given an integer K, the K-contingency list problem gives the list of K-most critical entities, failure of which maximizes the network damage at the current time. The problem being NP complete [2] and owing to the higher running time of the given Integer Linear Programming (ILP) based solution [3], a much faster heuristic solution to generate an event driven self-updating K-contingency list [4] is also given in this paper. Based on the contingency lists obtained from both the solutions, this paper proposes an adaptive entity hardening technique based on a leader-follower game theoretic approach that arrests the cascading failure of entities in the SGS after an initial failure of entities. The validation of the work is done by comparing the contingency lists using both types of solutions, obtained for different K values using the MIIM model on a smart grid of IEEE 14-Bus system with that obtained by simulating the smart grid using a co-simulation system formed by MATPOWER and Java Network Simulator (JNS). The K-contingency list obtained for a smart grid of IEEE 14-Bus system also indicate that the network damage predicted by both the ILP based solution and heuristic solution using MIIM are more realistic compared to that obtained using another dependency model called Implicative Interdependency Model (IIM) [2]. Advantage of using the MIIM based heuristic solution is also shown in this paper when larger SGS of IEEE 118-Bus is considered. Finally, it is shown how the adaptive hardening helps in improving the network performance.


翻译:智能网格系统(SGS) 是一个由电力和通信网络组成的联合网络。 在本文中, 使用一个称为 Modified Indition Indition Indition Indition Indidition Indictication Indivision model (MIIM) [1] 来捕捉给给定的 SGS 的实体之间基本的内和相互依存关系[3]。 K- condition list 问题给出了K- most 关键实体的列表, K- condition Greistrict 。 问题在于 NP 完成 [2], 问题在于给定的 Integer Lina 编程(ILP) 解决方案[3] 运行时间较长, 一个更快得多的内和内联互连互连互连互连互连互连互连互连互连 。 本文还根据两个解决方案的应急互连连连调列表提供[4], K- condistration a redistration a registration districal a livestal modistration the I-I-I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I- I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
112+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
量化金融强化学习论文集合
专知
14+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关资讯
量化金融强化学习论文集合
专知
14+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员