We introduce an efficient nonreversible Markov chain Monte Carlo algorithm to generate self-avoiding walks with a variable endpoint. In two dimensions, the new algorithm slightly outperforms the two-move nonreversible Berretti-Sokal algorithm introduced by H.~Hu, X.~Chen, and Y.~Deng in \cite{old}, while for three-dimensional walks, it is 3--5 times faster. The new algorithm introduces nonreversible Markov chains that obey global balance and allows for three types of elementary moves on the existing self-avoiding walk: shorten, extend or alter conformation without changing the walk's length.
翻译:我们引入了一个高效的不可逆的 Markov 连锁 Monte Carlo 算法,用一个可变的终点来产生自保行走。 在两个层面,新的算法略优于由H.~Hu, X.~ Chen和Y. ~ Deng引入的两步不可逆的Berrettti-Sokal算法,而对于三维行走来说,新算法更快3-5倍。新的算法引入了不可逆的Markov 链,它们符合全球平衡,允许在现有的自保行走上进行三种基本动作:缩短、延长或改变一致性,而不改变行走长度。