The $k$-sample testing problem tests whether or not $k$ groups of data points are sampled from the same distribution. Multivariate analysis of variance (MANOVA) is currently the gold standard for $k$-sample testing but makes strong, often inappropriate, parametric assumptions. Moreover, independence testing and $k$-sample testing are tightly related, and there are many nonparametric multivariate independence tests with strong theoretical and empirical properties, including distance correlation (Dcorr) and Hilbert-Schmidt-Independence-Criterion (Hsic). We prove that universally consistent independence tests achieve universally consistent $k$-sample testing and that $k$-sample statistics like Energy and Maximum Mean Discrepancy (MMD) are exactly equivalent to Dcorr. Empirically evaluating these tests for $k$-sample scenarios demonstrates that these nonparametric independence tests typically outperform MANOVA, even for Gaussian distributed settings. Finally, we extend these non-parametric $k$-sample testing procedures to perform multiway and multilevel tests. Thus, we illustrate the existence of many theoretically motivated and empirically performant $k$-sample tests. A Python package with all independence and k-sample tests called hyppo is available from https://hyppo.neurodata.io/.


翻译:美元- 美元- 标准测试问题测试 美元- 标准测试 美元- 标准测试 美元- 标准测试 美元- 标准测试 美元- 标准测试 问题测试 美元- 标准测试 问题测试 美元- 标准测试 问题测试 问题测试 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 。 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 差异 差异 差异 差异 差异 差异 差异 差异 差异 差异 差异 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
112+阅读 · 2020年5月15日
专知会员服务
63+阅读 · 2020年3月4日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
15+阅读 · 2020年12月17日
VIP会员
相关VIP内容
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员