The recursive logit (RL) model provides a flexible framework for modeling sequential decision-making in transportation and choice networks, with important applications in route choice analysis, multiple discrete choice problems, and activity-based travel demand modeling. Despite its versatility, estimation of the RL model typically relies on nested fixed-point (NFXP) algorithms that are computationally expensive and prone to numerical instability. We propose a new approach that reformulates the maximum likelihood estimation problem as an optimization problem with equilibrium constraints, where both the structural parameters and the value functions are treated as decision variables. We further show that this formulation can be equivalently transformed into a conic optimization problem with exponential cones, enabling efficient solution using modern conic solvers such as MOSEK. Experiments on synthetic and real-world datasets demonstrate that our convex reformulation achieves accuracy comparable to traditional methods while offering significant improvements in computational stability and efficiency, thereby providing a practical and scalable alternative for recursive logit model estimation.
翻译:递归Logit(RL)模型为交通与选择网络中的序贯决策建模提供了一个灵活的框架,在路径选择分析、多元离散选择问题以及基于活动的出行需求建模中具有重要应用。尽管该模型具有通用性,但其估计通常依赖于嵌套不动点(NFXP)算法,这类算法计算成本高昂且易受数值不稳定性影响。我们提出一种新方法,将最大似然估计问题重新表述为带有均衡约束的优化问题,其中结构参数与价值函数均被视为决策变量。我们进一步证明,该表述可等价转化为包含指数锥的锥优化问题,从而能够利用MOSEK等现代锥优化求解器进行高效求解。在合成与真实数据集上的实验表明,我们的凸重构方法在达到与传统方法相当精度的同时,显著提升了计算稳定性与效率,从而为递归Logit模型估计提供了一种实用且可扩展的替代方案。