Semantic parsing is challenging due to the structure gap and the semantic gap between utterances and logical forms. In this paper, we propose an unsupervised semantic parsing method - Synchronous Semantic Decoding (SSD), which can simultaneously resolve the semantic gap and the structure gap by jointly leveraging paraphrasing and grammar constrained decoding. Specifically, we reformulate semantic parsing as a constrained paraphrasing problem: given an utterance, our model synchronously generates its canonical utterance and meaning representation. During synchronous decoding: the utterance paraphrasing is constrained by the structure of the logical form, therefore the canonical utterance can be paraphrased controlledly; the semantic decoding is guided by the semantics of the canonical utterance, therefore its logical form can be generated unsupervisedly. Experimental results show that SSD is a promising approach and can achieve competitive unsupervised semantic parsing performance on multiple datasets.
翻译:语义解析由于结构差异和语义与逻辑形式之间的语义差异而具有挑战性。 在本文中, 我们提出一种不受监督的语义解析方法 — 同步语义解析法( SSD), 它可以同时通过联合利用参数解码和语法限制解码来解决语义差异和结构差异。 具体地说, 我们重新将语义解析作为受制约的参数解析问题: 在发音中, 我们的模型同步生成其发音和含义表达。 在同步解码过程中: 语义解析受逻辑形式结构的制约, 因此, 语义解解析可以被控制地套用; 语义解析法解析法以语义表达法为指导, 因此其逻辑形式可以产生不超强的。 实验结果显示, SSD 是一种很有希望的方法, 可以在多个数据设置上实现竞争性的、 不受监督的语义解析的功能。