When using machine learning techniques in decision-making processes, the interpretability of the models is important. In the present paper, we adopted the Shapley additive explanation (SHAP), which is based on fair profit allocation among many stakeholders depending on their contribution, for interpreting a gradient-boosting decision tree model using hospital data. For better interpretability, we propose two novel techniques as follows: (1) a new metric of feature importance using SHAP and (2) a technique termed feature packing, which packs multiple similar features into one grouped feature to allow an easier understanding of the model without reconstruction of the model. We then compared the explanation results between the SHAP framework and existing methods. In addition, we showed how the A/G ratio works as an important prognostic factor for cerebral infarction using our hospital data and proposed techniques.


翻译:在决策过程中使用机器学习技术时,模型的可解释性很重要,在本文件中,我们采用了基于根据贡献在众多利害相关方之间公平分配利润的沙普利添加解释(SHAP),用于解释使用医院数据的梯度加速决策树模型。为了更好地解释,我们提出两种新颖技术如下:(1) 使用SHAP的新标准,具有特别重要性;(2) 称为特征包装的技术,将多个类似特征包装成一个组合特征,以便能够在不重建模型的情况下更容易理解模型。然后,我们比较了SHP框架和现有方法之间的解释结果。此外,我们展示了A/G比率如何使用医院数据和拟议技术作为脑干燥的重要预测因素。

2
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Machine Learning:十大机器学习算法
开源中国
20+阅读 · 2018年3月1日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
49+阅读 · 2021年5月9日
Arxiv
45+阅读 · 2019年12月20日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Machine Learning:十大机器学习算法
开源中国
20+阅读 · 2018年3月1日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员