Accurate prediction of deformable linear object (DLO) dynamics is challenging if the task at hand requires a human-interpretable yet computationally fast model. In this work, we draw inspiration from the pseudo-rigid body method (PRB) and model a DLO as a serial chain of rigid bodies whose internal state is unrolled through time by a dynamics network. This dynamics network is trained jointly with a physics-informed encoder which maps observed motion variables to the DLO's hidden state. To encourage that the state acquires a physically meaningful representation, we leverage the forward kinematics of the PRB model as decoder. We demonstrate in robot experiments that the proposed DLO dynamics model provides physically interpretable predictions from partial observations while being on par with black-box models regarding prediction accuracy. The project code is available at: http://tinyurl.com/prb-networks
翻译:暂无翻译