We introduce the problem of Private Linear Transformation (PLT). This problem includes a single (or multiple) remote server(s) storing (identical copies of) $K$ messages and a user who wants to compute $L$ linear combinations of a $D$-subset of these messages by downloading the minimum amount of information from the server(s) while protecting the privacy of the entire set of $D$ messages. This problem generalizes the Private Information Retrieval and Private Linear Computation problems. In this work, we focus on the single-server case. For the setting in which the coefficient matrix of the required $L$ linear combinations generates a Maximum Distance Separable (MDS) code, we characterize the capacity -- defined as the supremum of all achievable download rates, for all parameters $K, D, L$. In addition, we present lower and/or upper bounds on the capacity for the settings with non-MDS coefficient matrices and the settings with a prior side information.


翻译:我们引入了私人线性转换(PLT)问题。 这个问题包括单个( 或多个) 远程服务器存储( 相同副本) $$ 信息, 以及用户想要通过下载服务器最低限度的信息量,同时保护全套美元信息的隐私,来计算这些电文中美元子集的线性组合( 美元- 美元- 子集) 。 这个问题泛泛地说明了私人信息检索和私人线性比较问题。 在这项工作中, 我们侧重于单服务器案例。 在设定所需的美元线性组合的系数矩阵生成最大距离值时, 我们将能力定义为所有参数所有可实现下载率的组合( $、 D、 L$ ) 。 此外, 我们用非 MDS 系数矩阵和设置前侧信息对设置的容量进行下限和/ 或上限。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
已删除
将门创投
6+阅读 · 2019年6月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Arxiv
0+阅读 · 2021年3月26日
Arxiv
0+阅读 · 2021年3月26日
Arxiv
0+阅读 · 2021年3月25日
Arxiv
0+阅读 · 2021年3月25日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
6+阅读 · 2019年6月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Top
微信扫码咨询专知VIP会员