The fundamental principle of Graph Neural Networks (GNNs) is to exploit the structural information of the data by aggregating the neighboring nodes using a graph convolution. Therefore, understanding its influence on the network performance is crucial. Convolutions based on graph Laplacian have emerged as the dominant choice with the symmetric normalization of the adjacency matrix $A$, defined as $D^{-1/2}AD^{-1/2}$, being the most widely adopted one, where $D$ is the degree matrix. However, some empirical studies show that row normalization $D^{-1}A$ outperforms it in node classification. Despite the widespread use of GNNs, there is no rigorous theoretical study on the representation power of these convolution operators, that could explain this behavior. In this work, we analyze the influence of the graph convolutions theoretically using Graph Neural Tangent Kernel in a semi-supervised node classification setting. Under a Degree Corrected Stochastic Block Model, we prove that: (i) row normalization preserves the underlying class structure better than other convolutions; (ii) performance degrades with network depth due to over-smoothing, but the loss in class information is the slowest in row normalization; (iii) skip connections retain the class information even at infinite depth, thereby eliminating over-smoothing. We finally validate our theoretical findings on real datasets.
翻译:图形神经网络(GNNS)的根本原则是利用数据的结构信息,利用图形相邻节点使用图形相融合的图形相融合。 因此,理解其对网络性能的影响至关重要。 以图Laplacian为基础的革命已经成为了对称组合基质($A, 定义为$D ⁇ -1/2}AD ⁇ ⁇ -1/2}$)的主要选择, 这是被最广泛采纳的, 以美元为度矩阵。 然而, 一些实证研究表明,行的正常化($D ⁇ -1}A$)优于它的分类。 尽管广泛使用GNNS, 但没有对这些组合操作者的代表性力量进行严格的理论研究, 从而可以解释这种行为。 在这项工作中, 我们用半超常的节点分类设置来分析图形相融合的影响。 在度校正模型模型下, 我们证明:(i) 行的正常化比其他相近的分类结构更优于它。 (ii) 这些组合操作的理论性研究没有严格的理论性研究, 从而消除了班级的深度网络。 (ii) 运行速度下降, 导致的深度网络的深度。