In this work, we target the problem of uncertain points refinement for image-based LiDAR point cloud semantic segmentation (LiDAR PCSS). This problem mainly results from the boundary-blurring problem of convolution neural networks (CNNs) and quantitation loss of spherical projection, which are often hard to avoid for common image-based LiDAR PCSS approaches. We propose a plug-and-play transformer-based uncertain point refiner (TransUPR) to address the problem. Through local feature aggregation, uncertain point localization, and self-attention-based transformer design, TransUPR, integrated into an existing range image-based LiDAR PCSS approach (e.g., CENet), achieves the state-of-the-art performance (68.2% mIoU) on Semantic-KITTI benchmark, which provides a performance improvement of 0.6% on the mIoU.
翻译:在这项工作中,我们针对基于图像的LiDAR点云断层(LiDAR PCSS)的不确定点改进问题,这个问题主要源于以图像为基础的LiDAR点云层断层(LiDAR PCSS)的边界扰动问题和球形投影的量化损失,对于以普通图像为基础的LiDAR PCSS方法来说,这些问题往往很难避免。我们建议用基于插件和功能的变压器的不确定点提炼器(TransUPR)来解决这个问题。通过本地特性集成、不确定点本地化和以自我注意为基础的变压器设计,TransUPRU,融入了以图像为基础的现有LiDAR PCSS(例如CENet)的分布范围图解问题,在Semantic-KITTI基准上实现了最先进的性能(68.2% mIOU),该基准使MIOU的性能改进率为0.6%。