Pure-jump L\'evy processes are popular classes of stochastic processes which have found many applications in finance, statistics or machine learning. In this paper, we propose a novel family of self-decomposable L\'evy processes where one can control separately the tail behavior and the jump activity of the process, via two different parameters. Crucially, we show that one can sample exactly increments of this process, at any time scale; this allows the implementation of likelihood-free Markov chain Monte Carlo algorithms for (asymptotically) exact posterior inference. We use this novel process in L\'evy-based stochastic volatility models to predict the returns of stock market data, and show that the proposed class of models leads to superior predictive performances compared to classical alternatives.
翻译:纯- jump L\' evy 过程是流行的随机过程类别, 它在金融、 统计或机器学习中发现了许多应用。 在本文中, 我们提出一个全新的可自我解析 L\' evy 过程系列, 通过两个不同的参数可以分别控制过程的尾部行为和跳跃活动。 值得注意的是, 我们表明, 我们可以在任何时间范围内对这一过程的精确递增进行抽样抽样; 这样可以实施无概率的 Markov 连锁 Monte Carlo 算法, 用于( 暂时的) 精确的后方推论。 我们使用基于 L\' evy 的随机波动模型的这个新颖过程来预测股票市场数据的回报, 并表明, 拟议的模型类别可以比经典的替代方法产生更优越的预测性能 。