In the last few years there has been significant growth in the area of wireless communication. IEEE 802.16/WiMAX is the network which is designed for providing high speed wide area broadband wireless access; WiMAX is an emerging wireless technology for creating multi-hop Mesh network. Future generation networks will be characterized by variable and high data rates, Quality of Services (QoS), seamless mobility both within a network and between networks of different technologies and service providers. A technology is developed to accomplish these necessities is regular by IEEE, is 802.16, also called as WiMAX (Worldwide Interoperability for Microwave Access). This architecture aims to apply Long range connectivity, High data rates, High security, Low power utilization and Excellent Quality of Services and squat deployment costs to a wireless access technology on a metropolitan level. In this paper we have observed the performance analysis of location based resource allocation for WiMAX and WLAN-WiMAX client and in second phase we observed the rate-adaptive algorithms. We know that base station (BS) is observed the ranging first for all subscribers then established the link between them and in final phase they will allocate the resource with Subcarriers allocation according to the demand (UL) i.e. video, voice and data application. We propose linear approach, Active-Set optimization and Genetic Algorithm for Resource Allocation in downlink Mobile WiMAX networks. Purpose of proposed algorithms is to optimize total throughput. Simulation results show that Genetic Algorithm and Active-Set algorithm performs better than previous methods in terms of higher capacities but GA have high complexity then active set.


翻译:在过去几年里,无线通信领域出现了显著增长。IEEE 802.16/WiMAX是设计用于提供高速广域宽带无线接入的网络;WiMAX是新兴的无线技术,用于创建多hop网;未来发电网络的特点是数据率可变和高的数据率;服务质量(QOS),不同技术和服务提供者网络内部和网络之间无缝流动;IEEEE为满足这些需要开发了一种技术,其频率为802.16,也称为WiMAX(微波接入世界范围的互操作性)。这一结构旨在将远程连通、高数据率、高安全率、低电力利用率和极好的服务部署成本应用于一个大都市一级的无线接入技术。在本文件中,我们观察了对WIMAX和WLAN-WIMAX客户之间资源分配定位的性能分析,在第二阶段,我们观察了降速算算算法。我们知道,基础站(BS)首先观察了所有用户在高频域联网上建立了总链接,而在最后阶段,它们将显示S-Alial-Rial配置资源,然后通过S-LRial配置。我们通过S-Rial-S-S-S-A在S-S-S-S-Simalalalalalal-A/S-A/Simalreal-AD-AD-AD-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SD-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
6+阅读 · 2019年4月8日
HAQ: Hardware-Aware Automated Quantization
Arxiv
6+阅读 · 2018年11月21日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员