There has been significant work recently on integer programs (IPs) $\min\{c^\top x \colon Ax\leq b,\,x\in \mathbb{Z}^n\}$ with a constraint marix $A$ with bounded subdeterminants. This is motivated by a well-known conjecture claiming that, for any constant $\Delta\in \mathbb{Z}_{>0}$, $\Delta$-modular IPs are efficiently solvable, which are IPs where the constraint matrix $A\in \mathbb{Z}^{m\times n}$ has full column rank and all $n\times n$ minors of $A$ are within $\{-\Delta, \dots, \Delta\}$. Previous progress on this question, in particular for $\Delta=2$, relies on algorithms that solve an important special case, namely strictly $\Delta$-modular IPs, which further restrict the $n\times n$ minors of $A$ to be within $\{-\Delta, 0, \Delta\}$. Even for $\Delta=2$, such problems include well-known combinatorial optimization problems like the minimum odd/even cut problem. The conjecture remains open even for strictly $\Delta$-modular IPs. Prior advances were restricted to prime $\Delta$, which allows for employing strong number-theoretic results. In this work, we make first progress beyond the prime case by presenting techniques not relying on such strong number-theoretic prime results. In particular, our approach implies that there is a randomized algorithm to check feasibility of strictly $\Delta$-modular IPs in strongly polynomial time if $\Delta\leq4$.


翻译:最近在整数程序(IP) $\\ min\\\ c\ ⁇ top x\ croom Ax\leq b,\,\,x\ in\ mathbb\\\ n$ $,但有限制的 marix $A$, 与受约束的子确定性成交者一起, 最近做了大量的工作。 其动机是, 对于任何恒定的 $\ Delta\ in\ mathblb=0美元, $del$- modal IPs 有效可以溶解一个重要的特殊案例, 即严格地说, $A\ in\ mortb\ timen $, 严格地说, 所有美元n\ timetime minates, $naxnA\ dal delistal mailal droupal droads, 具体地说, ialtial $\\\\\\\ max max max lial mailal rial mail max max maxyal max max 美元。

0
下载
关闭预览

相关内容

NeurIPS 是全球最受瞩目的AI、机器学习顶级学术会议之一,每年全球的人工智能爱好者和科学家都会在这里聚集,发布最新研究。NeurIPS 2019大会将在12月8日-14日在加拿大温哥华举行。据官方统计消息,NeurIPS今年共收到投稿6743篇,其中接收论文1428篇,接收率21.1%。官网地址:https://neurips.cc/

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
39+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月31日
Arxiv
0+阅读 · 2023年3月31日
Arxiv
11+阅读 · 2021年3月25日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员