Background and Objectives: Personalised medicine remains a major challenge for scientists. The rapid growth of Machine learning and Deep learning has made it a feasible alternative for predicting the most appropriate therapy for individual patients. However, the lack of interpretation of their results and high computational requirements make many reluctant to use these methods. Methods: Several Machine learning and Deep learning models have been implemented into a single software tool, SIBILA. Once the models are trained, SIBILA applies a range of interpretability methods to identify the input features that each model considered the most important to predict. In addition, all the features obtained are put in common to estimate the global attribution of each variable to the predictions. To facilitate its use by non-experts, SIBILA is also available to all users free of charge as a web server at https://bio-hpc.ucam.edu/sibila/. Results: SIBILA has been applied to three case studies to show its accuracy and efficiency in classification and regression problems. The first two cases proved that SIBILA can make accurate predictions even on uncleaned datasets. The last case demonstrates that SIBILA can be applied to medical contexts with real data. Conclusion: With the aim of becoming a powerful decision-making tool for clinicians, SIBILA has been developed. SIBILA is a novel software tool that leverages interpretable machine learning to make accurate predictions and explain how models made those decisions. SIBILA can be run on high-performance computing platforms, drastically reducing computing times.


翻译:个人化医学:个人化医学仍然是科学家面临的一项重大挑战。机器学习和深层学习的迅速增长使得它成为预测个人患者最适当治疗的可行替代方案。然而,由于对结果缺乏解释以及计算要求高,许多用户不愿使用这些方法。方法:一些机器学习和深层次学习模型已安装成单一软件工具,SIBILA。模型培训后,SIBILA应用了一系列解释性方法,以确定每个模型认为最重要的投入特征;此外,所有获得的特征都被置于共同之处,用以估计每个变量的全球归属与预测的对比。为方便非专家使用,SIBILIA还免费向所有用户提供SIBILA作为网络服务器在https://bio-hpcum.edubem.edu/sibila/。结果:SIBILA应用了三个案例研究,以显示其在分类和回归问题中的准确性能和效率。前两个案例证明,SIBILA可以准确预测每个变量的准确性。最后一个案例表明,SIBA的准确性解释是SILA的正确性,而SILA的正确性解释过程是用来解释。SILA的正确性数据。S-ILA的正确性,而不断演变的正确性数据是用于精确性能的精确性能的计算。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Mental Models of Adversarial Machine Learning
Arxiv
0+阅读 · 2022年6月29日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员