Recognizing handwriting images is challenging due to the vast variation in writing style across many people and distinct linguistic aspects of writing languages. In Vietnamese, besides the modern Latin characters, there are accent and letter marks together with characters that draw confusion to state-of-the-art handwriting recognition methods. Moreover, as a low-resource language, there are not many datasets for researching handwriting recognition in Vietnamese, which makes handwriting recognition in this language have a barrier for researchers to approach. Recent works evaluated offline handwriting recognition methods in Vietnamese using images from an online handwriting dataset constructed by connecting pen stroke coordinates without further processing. This approach obviously can not measure the ability of recognition methods effectively, as it is trivial and may be lack of features that are essential in offline handwriting images. Therefore, in this paper, we propose the Transferring method to construct a handwriting image dataset that associates crucial natural attributes required for offline handwriting images. Using our method, we provide a first high-quality synthetic dataset which is complex and natural for efficiently evaluating handwriting recognition methods. In addition, we conduct experiments with various state-of-the-art methods to figure out the challenge to reach the solution for handwriting recognition in Vietnamese.


翻译:在越南,除了现代的拉丁字符外,还有口音和字母标记以及字符,给最先进的笔迹识别方法带来混乱。此外,作为一个低资源语言,越南没有太多用于研究笔迹识别的数据集,这使得这种语言的笔迹识别对研究人员来说是一个障碍。最近的工作利用通过将笔记坐标连接起来而无需进一步处理的在线笔迹识别数据集对越南的脱线笔迹识别方法进行了评估。这一方法显然无法有效地衡量识别方法的能力,因为它是微不足道的,而且可能缺乏非线性笔迹图像中必不可少的特征。因此,在本文中,我们建议采用转移方法构建笔迹图像数据集,将离线笔迹图像所需的关键自然属性联系起来。我们使用我们的方法提供了第一个高质量的合成数据集,该数据集对有效评估笔迹识别方法是复杂和自然的。此外,我们用各种最先进的方法进行实验,以找出在越南实现笔迹识别解决方案的挑战。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年1月4日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
15+阅读 · 2021年7月14日
Arxiv
20+阅读 · 2020年6月8日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Arxiv
19+阅读 · 2018年5月17日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员