Deep learning recommendation models (DLRMs) are used across many business-critical services at Facebook and are the single largest AI application in terms of infrastructure demand in its data-centers. In this paper we discuss the SW/HW co-designed solution for high-performance distributed training of large-scale DLRMs. We introduce a high-performance scalable software stack based on PyTorch and pair it with the new evolution of \zion platform, namely \zionex. We demonstrate the capability to train very large DLRMs with up to \emph{12 Trillion parameters} and show that we can attain $40\times$ speedup in terms of time to solution over previous systems. We achieve this by (i) designing the \zionex platform with dedicated scale-out network, provisioned with high bandwidth, optimal topology and efficient transport (ii) implementing an optimized PyTorch-based training stack supporting both model and data parallelism (iii) developing sharding algorithms capable of hierarchical partitioning of the embedding tables along row, column dimensions and load balancing them across multiple workers; (iv) adding high-performance core operators while retaining flexibility to support optimizers with fully deterministic updates (v) leveraging reduced precision communications, multi-level memory hierarchy (HBM+DDR+SSD) and pipelining. Furthermore, we develop and briefly comment on distributed data ingestion and other supporting services that are required for the robust and efficient end-to-end training in production environments.
翻译:在Facebook上,许多业务关键服务都使用深学习建议模式(DLRMs),这是其数据中心基础设施需求方面最大的单一AI应用。在本文中,我们讨论了SW/HW共同设计的大规模DLRM高性能分布培训解决方案。我们采用了基于PyTorch的高性能可缩放软件堆,并将其与\zion平台的新演进相匹配,即\zionex。我们展示了培训大型DLRM的能力,在基础设施需求方面是最大的AI应用。我们讨论了SW/HW共同设计的大规模DLRM高性能分布培训的解决方案。我们采用了基于PyToirch的高性能可缩放软件堆,即\zionex。我们展示了能够将嵌入表格的分级分隔环境与每行、各栏尺寸和负载的加速40美元速度,以便比以往系统解决问题的时间更快。我们通过(i)设计带有专门的缩放网络的\zionex平台,配备高带宽、最佳的表型和高效的运输工具,支持模型和数据流化的升级。 (iv) 将高分级的计算,支持多级的升级的升级的升级的服务器和升级的服务器和升级的服务器。