Statistical methods are based on model assumptions, and it is statistical folklore that a method's model assumptions should be checked before applying it. This can be formally done by running one or more misspecification tests testing model assumptions before running a method that makes these assumptions; here we focus on model-based tests. A combined test procedure can be defined by specifying a protocol in which first model assumptions are tested and then, conditionally on the outcome, a test is run that requires or does not require the tested assumptions. Although such an approach is often taken in practice, much of the literature that investigated this is surprisingly critical of it. Our aim is to explore conditions under which model checking is advisable or not advisable. For this, we review results regarding such "combined procedures" in the literature, we review and discuss controversial views on the role of model checking in statistics, and we present a general setup in which we can show that preliminary model checking is advantageous, which implies conditions for making model checking worthwhile.


翻译:统计方法以模型假设为基础,而统计民俗则要求在应用方法之前先对方法的模型假设进行检验。这可以通过在使用一种或多种不恰当的测试模型假设方法之前先运行一种或多种不恰当的测试模型假设来正式实现;我们在此侧重于基于模型的测试。可以规定一个联合测试程序,在协议中首先测试模型假设,然后以结果为条件,进行需要或不需要经过测试的假设的测试。虽然这种方法经常在实践中采用,但调查这一方法的许多文献对此提出惊人的批评。我们的目的是探索模式检查是否可取的条件。为此,我们审查文献中这种“合并程序”的结果,审查和讨论关于模型检查在统计中作用的争议性观点,我们提出一个总体设置,我们可以在其中显示初步模型检查是有利的,这意味着使模型检查具有价值的条件。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Arxiv
0+阅读 · 2021年5月10日
Arxiv
0+阅读 · 2021年5月10日
Arxiv
0+阅读 · 2021年5月5日
Arxiv
0+阅读 · 2021年5月4日
Arxiv
0+阅读 · 2021年5月4日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
相关论文
Top
微信扫码咨询专知VIP会员