Classic dynamic data structure problems maintain a data structure subject to a sequence S of updates and they answer queries using the latest version of the data structure, i.e., the data structure after processing the whole sequence. To handle operations that change the sequence S of updates, Demaine et al. (TALG 2007) introduced retroactive data structures. A retroactive operation modifies the update sequence S in a given position t, called time, and either creates or cancels an update in S at time t. A partially retroactive data structure restricts queries to be executed exclusively in the latest version of the data structure. A fully retroactive data structure supports queries at any time t: a query at time t is answered using only the updates of S up to time t. If the sequence S only consists of insertions, the resulting data structure is an incremental retroactive data structure. While efficient retroactive data structures have been proposed for classic data structures, e.g., stack, priority queue and binary search tree, the retroactive version of graph problems are rarely studied. In this paper we study retroactive graph problems including connectivity, minimum spanning forest (MSF), maximum degree, etc. We provide fully retroactive data structures for maintaining the maximum degree, connectivity and MSF in $\tilde{O}(n)$ time per operation. We also give an algorithm for the incremental fully retroactive connectivity with $\tilde{O}(1)$ time per operation. We compliment our algorithms with almost tight hardness results. We show that under the OMv conjecture (proposed by Henzinger et al. (STOC 2015)), there does not exist fully retroactive data structures maintaining connectivity or MSF, or incremental fully retroactive data structure maintaining the maximum degree with $O(n^{1-\epsilon})$ time per operation, for any constant $\epsilon > 0$.
翻译:经典动态数据结构问题维持一个数据结构,但须遵循S更新顺序,并使用数据结构的最新版本回答查询,即处理整个序列后的数据结构。要处理改变S更新序列的操作,Demaine 等(TALG 2007)引入追溯性数据结构。一个追溯性操作修改特定位置的S更新序列,调用时间,或者在时间S创建或取消更新。一个部分追溯性的数据结构限制只用数据结构的最新版本执行的查询。一个完全追溯性的数据结构支持在任何时候的查询:一个完全追溯性的数据结构支持查询:一个在时间 t 时的查询仅使用S直到时间的更新, Demaine 等(TALGG 2007) 引入了追溯性数据结构。虽然为经典数据结构提出了高效的追溯性数据结构,例如堆放、优先排队列和二进式搜索树,但很少研究图形问题的追溯性版本。 在本文中,我们保留追溯性图表问题,包括连结性、最小跨越森林的递增速度(MSF)、最高追溯性直径直值连接度的运行时间结构 。