Recent advances in Fourier analysis have brought new tools to efficiently represent and learn set functions. In this paper, we bring the power of Fourier analysis to the design of combinatorial auctions (CAs). The key idea is to approximate bidders' value functions using Fourier-sparse set functions, which can be computed using a relatively small number of queries. Since this number is still too large for real-world CAs, we propose a new hybrid design: we first use neural networks to learn bidders' values and then apply Fourier analysis to the learned representations. On a technical level, we formulate a Fourier transform-based winner determination problem and derive its mixed integer program formulation. Based on this, we devise an iterative CA that asks Fourier-based queries. We experimentally show that our hybrid ICA achieves higher efficiency than prior auction designs, leads to a fairer distribution of social welfare, and significantly reduces runtime. With this paper, we are the first to leverage Fourier analysis in CA design and lay the foundation for future work in this area.
翻译:Fourier分析的最新进展带来了高效代表并学习设定功能的新工具。 在本文中,我们把Fourier分析的力量带到组合拍卖的设计中。 关键的想法是使用Fourier-sparse成套功能来估计投标人的价值功能, 使用相对较少的查询量来计算这些功能。 由于这一数字对于真实世界的CA来说仍然太大, 我们建议一个新的混合设计: 我们首先使用神经网络来学习投标人的价值, 然后将Fourier分析应用到学习的演示中。 在技术层面, 我们提出Fourier基于变异的赢家确定问题, 并得出其混合整数程序配置。 基于这一点, 我们设计了一个迭代CA, 向Fourier公司询问。 我们实验性地显示,我们的混合ICA比先前的拍卖设计效率更高, 导致社会福利的更公平的分配, 并大幅缩短运行时间。 有了这个文件, 我们首先在CA设计中运用了 Fourier的分析, 并为未来这一领域的工作打下基础 。