A massive number of traffic fatalities are due to driver errors. To reduce fatalities, developing intelligent driving systems assisting drivers to identify potential risks is in urgent need. Risky situations are generally defined based on collision prediction in existing research. However, collisions are only one type of risk in traffic scenarios. We believe a more generic definition is required. In this work, we propose a novel driver-centric definition of risk, i.e., risky objects influence driver behavior. Based on this definition, a new task called risk object identification is introduced. We formulate the task as a cause-effect problem and present a novel two-stage risk object identification framework, taking inspiration from models of situation awareness and causal inference. A driver-centric Risk Object Identification (ROI) dataset is curated to evaluate the proposed system. We demonstrate state-of-the-art risk object identification performance compared with strong baselines on the ROI dataset. In addition, we conduct extensive ablative studies to justify our design choices.
翻译:大量交通事故死亡是由于驾驶员错误造成的。为了减少死亡,迫切需要开发智能驾驶系统,协助驾驶员识别潜在风险。在现有研究中,一般根据碰撞预测对风险情况进行定义。但是,碰撞只是交通情况中的一种风险。我们认为,需要有一个更通用的定义。在这项工作中,我们提出了一个新的以驾驶员为中心的风险定义,即风险物体影响驱动者行为。根据这一定义,我们引入了一个新的任务,称为风险物体识别。我们把这项任务作为一个因果关系问题来拟订,并提出了一个新型的两阶段风险物体识别框架,从情况认识和因果关系的模型中汲取灵感。一个以驾驶员为中心的风险物体识别数据集是用来评价拟议系统的。我们展示了与ROI数据集的强基线相比的最新风险物体识别性表现。此外,我们进行了广泛的模拟研究,以证明我们的设计选择是合理的。