This work deals with the investigation of bifurcating fluid phenomena using a reduced order modelling setting aided by artificial neural networks. We discuss the POD-NN approach dealing with non-smooth solutions set of nonlinear parametrized PDEs. Thus, we study the Navier-Stokes equations describing: (i) the Coanda effect in a channel, and (ii) the lid driven triangular cavity flow, in a physical/geometrical multi-parametrized setting, considering the effects of the domain's configuration on the position of the bifurcation points. Finally, we propose a reduced manifold-based bifurcation diagram for a non-intrusive recovery of the critical points evolution. Exploiting such detection tool, we are able to efficiently obtain information about the pattern flow behaviour, from symmetry breaking profiles to attaching/spreading vortices, even at high Reynolds numbers.
翻译:这项工作涉及利用由人工神经网络协助的减少顺序建模来调查分立流体现象。我们讨论了POD-NN 方法,处理非线性半光化PDEs的非悬浮解决方案组。因此,我们研究了纳维埃-斯托克斯方程式,描述:(一) 通道中的孔达效应,和(二) 以物理/几何式多平衡的立方形驱动三角洞流,考虑到域的配置对两光点位置的影响。最后,我们提出一个基于多光基双向图,用于非侵入性地恢复临界点的演变。利用这种探测工具,我们能够有效地获得关于模式流动行为的信息,从对称断裂剖面到附加/扩展多光学,甚至高值的Reynolds。