AC optimal power flow (AC-OPF) problems need to be solved more frequently in the future to maintain stable and economic power system operation. To tackle this challenge, a deep neural network-based voltage-constrained approach (DeepOPF-V) is proposed to solve AC-OPF problems with high computational efficiency. Its unique design predicts voltages of all buses and then uses them to reconstruct the remaining variables without solving non-linear AC power flow equations. A fast post-processing process is developed to enforce the box constraints. The effectiveness of DeepOPF-V is validated by simulations on IEEE 118/300-bus systems and a 2000-bus test system. Compared with existing studies, DeepOPF-V achieves decent computation speedup up to four orders of magnitude and comparable performance in optimality gap and preserving the feasibility of the solution.
翻译:未来需要更经常地解决AC-OPF最佳电流问题,以维持稳定和经济的电力系统运行。为了应对这一挑战,建议采用基于深神经网络的电压限制方法(EepOPF-V),以高计算效率解决AC-OPF问题。它的独特设计预测所有公共汽车的电压,然后利用它重建其余变量,而不解决非线性AC电流方程式。开发了一个快速后处理程序,以实施箱内限制。DeepOPF-V的有效性通过IEEE 118/300-bus系统和2000-Bus测试系统的模拟得到验证。与现有研究相比,DeepOPF-V实现了体面的计算速度,在最佳性差方面达到四级规模和类似性能,并保持解决方案的可行性。