In exploratory tasks involving high-dimensional datasets, dimensionality reduction (DR) techniques help analysts to discover patterns and other useful information. Although scatter plot representations of DR results allow for cluster identification and similarity analysis, such a visual metaphor presents problems when the number of instances of the dataset increases, resulting in cluttered visualizations. In this work, we propose a scatter plot-based multilevel approach to display DR results and address clutter-related problems when visualizing large datasets, together with the definition of a methodology to use focus+context interaction on non-hierarchical embeddings. The proposed technique, called ExplorerTree, uses a sampling selection technique on scatter plots to reduce visual clutter and guide users through exploratory tasks. We demonstrate ExplorerTree's effectiveness through a use case, where we visually explore activation images of the convolutional layers of a neural network. Finally, we also conducted a user experiment to evaluate ExplorerTree's ability to convey embedding structures using different sampling strategies.
翻译:在涉及高维数据集、维度减少(DR)技术的探索性任务中,我们建议采用以撒布地块为基础的多层次方法来显示DR结果,并解决大型数据集的相干问题,同时界定在非等级嵌入上使用焦点+Cext互动的方法。拟议的技术称为ExplorerTree,在撒布地块上使用抽样选择技术来减少视觉布局并指导用户完成探索任务。我们通过一个使用案例来展示ExplorerTree的有效性,我们通过一个使用案例对一个神经网络革命层的图像进行视觉探索。最后,我们还进行了用户实验,以评价ExplorerTree利用不同取样战略传输嵌入结构的能力。