Statistical modeling of a nonstationary spatial extremal dependence structure is challenging. Parametric max-stable processes (MSPs) are common choices for modeling spatially-indexed block maxima, where an assumption of stationarity is usual to make inference feasible. However, this assumption is unrealistic for data observed over a large or complex domain. We develop a computationally-efficient method for estimating extremal dependence using a globally nonstationary but locally-stationary MSP construction, with the spatial domain divided into a fine grid of subregions, each with its own dependence parameters. We use LASSO ($L_1$) or ridge ($L_2$) penalties to obtain spatially-smooth parameter estimates. We then develop a novel data-driven algorithm to merge homogeneous neighboring subregions. The algorithm facilitates model parsimony and interpretability. To make our model suitable for high-dimensional data, we exploit a pairwise likelihood to perform inference and discuss its computational and statistical efficiency. We apply our proposed method to model monthly maximum temperature data at over 1400 sites in Nepal and the surrounding Himalayan and sub-Himalayan regions; we show significant improvements in model fit compared to a stationary model. Furthermore, we demonstrate that the estimated merged partition is interpretable from a geographic perspective and leads to better model diagnostics by adequately reducing the number of parameters.


翻译:对非静止空间极端依赖性结构进行统计建模具有挑战性。参数最大稳定进程(MSPs)是模拟空间索引区块最大值的常见选择,通常假设固定性是可行的推理。然而,对于在大或复杂领域观测的数据而言,这一假设是不现实的。我们开发了一个计算高效的方法,利用全球非静止但地方静止的MSP结构来估计极端依赖性,空间域分为各次区域的精细网格,每个区域都有自己的依赖性参数。我们使用LASSO(1美元)或峰值(L_2美元)的处罚来获得空间光谱参数估计。我们然后开发一个新的数据驱动算法,将同质相邻的次区域合并。算法为模型的精确性和可解释性提供了便利。为了使模型适合高度数据,我们利用一种双轨可能性来进行推算和讨论其计算和统计效率。我们采用我们提出的方法,在尼泊尔1400多个地点和周围的喜马拉山模型和亚亚亚亚次模型的每月最高温度数据模型模型模型模型,我们用2美元来进行模拟模拟,从可进行模拟分析参数进行适当的分析,我们从一个可适当展示,从一个可比较的地理分区展示一个显著的模型到一个更好的分析,从而展示,我们从一个可适当地展示一个更好的分析空间空间空间空间空间空间空间空间站的模型,从而展示一个可进行适当的分析。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年11月16日
Arxiv
0+阅读 · 2022年11月15日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员