Non-autoregressive (NAR) text generation has attracted much attention in the field of natural language processing, which greatly reduces the inference latency but has to sacrifice the generation accuracy. Recently, diffusion models, a class of latent variable generative models, have been introduced into NAR text generation, showing improved generation quality. In this survey, we review the recent progress in diffusion models for NAR text generation. As the background, we first present the general definition of diffusion models and the text diffusion models, and then discuss their merits for NAR generation. As the core content, we further introduce two mainstream diffusion models in existing text diffusion works, and review the key designs of the diffusion process. Moreover, we discuss the utilization of pre-trained language models (PLMs) for text diffusion models and introduce optimization techniques for text data. Finally, we discuss several promising directions and conclude this paper. Our survey aims to provide researchers with a systematic reference of related research on text diffusion models for NAR generation.


翻译:在自然语言处理领域,非潜移(NAR)的文本生成引起了许多注意,这大大减少了推论时间的延缓,但不得不牺牲生成的准确性。最近,传播模型,即一组潜在的可变基因模型,被引入了NAR文本生成中,显示了更佳的生成质量。在本次调查中,我们审查了NAR文本生成的传播模型的最新进展。作为背景,我们首先介绍传播模型和文本传播模型的一般定义,然后讨论其优点。作为核心内容,我们进一步将两种主流传播模型引入现有文本传播工作,并审查传播过程的关键设计。此外,我们还讨论了将预先培训的语言模型用于文本传播模型,并引入了文本数据优化技术。最后,我们讨论了若干有希望的方向,并完成了这份文件。我们的调查旨在为研究人员提供关于NAR生成文本传播模型相关研究的系统参考。</s>

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
119+阅读 · 2022年4月21日
专知会员服务
123+阅读 · 2020年9月8日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2022年10月27日
Arxiv
29+阅读 · 2022年9月10日
Arxiv
44+阅读 · 2022年9月6日
Arxiv
15+阅读 · 2021年12月22日
Arxiv
18+阅读 · 2020年10月9日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员