Modern software systems rely on a multitude of third-party dependencies. This large-scale code reuse reduces development costs and time, and it poses new challenges with respect to maintenance and security. Techniques such as tree shaking or shading can remove dependencies that are completely unused by a project, which partly address these challenges. Yet, the remaining dependencies are likely to be used only partially, leaving room for further reduction of third-party code. In this paper, we propose a novel technique to specialize dependencies of Java projects, based on their actual usage. For each dependency, we systematically identify the subset of its functionalities that is necessary to build the project, and remove the rest. Each specialized dependency is repackaged. Then, we generate specialized dependency trees where the original dependencies are replaced by the specialized versions and we rebuild the project. We implement our technique in a tool called DepTrim, which we evaluate with 30 notable open-source Java projects. DepTrim specializes a total of 343 (86.6%) dependencies across these projects, and successfully rebuilds each project with a specialized dependency tree. Moreover, through this specialization, DepTrim removes a total of 60,962 (47.0%) classes from the dependencies, reducing the ratio of dependency classes to project classes from 8.7x in the original projects to 4.4x after specialization. These results indicate the relevance of dependency specialization to significantly reduce the share of third-party code in Java projects.


翻译:现代软件系统依赖第三方的多种依赖性。 这种大规模代码再利用会降低开发成本和时间,并给维护和安全带来新的挑战。 树的摇晃或阴影等技术可以消除一个项目完全未使用的、部分应对这些挑战的项目完全未使用的依赖性。 然而,剩下的依赖性可能只是部分地使用,为进一步减少第三方代码留有余地。 在本文件中,我们根据Java项目的实际使用情况,提出一种新颖的技术,专门确定Java项目依赖性。对于每个依赖性,我们系统地确定建设项目和清除其余部分所需的功能。每个专门依赖性都重新包装。然后,我们在最初依赖性被专门版本取代的地方产生专门的依赖性树,并重建项目。 我们用一个名为DepTrim(我们用30个显著的开放性 Java项目来评估)的工具实施我们的技术。 DepTrim(我们根据这些项目的实际使用情况,提出了总共343 (86.6%) 依赖性项目,并成功地重建每个项目中具有专门性依赖性相关性的部分。 此外,通过这一专业化的8级,DeprimTrimital 将项目从60级从原来的专业化项目从最初的分类减少到整个。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月5日
Arxiv
0+阅读 · 2023年4月4日
Arxiv
0+阅读 · 2023年4月4日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员