Watermarking has been proposed as a way to protect the Intellectual Property Rights of Deep Neural Networks and track their use. Several methods have been proposed to embed the watermark into the trainable parameters of the network (white box watermarking) or into the input-output mapping implemented by the network in correspondence to specific inputs (black box watermarking). In both cases, achieving robustness against fine tuning, model compression and, even more, transfer learning, is one of the most difficult challenges researchers are facing with. In this paper, we propose a new white-box, multi-bit watermarking algorithm with strong robustness properties, including robustness against retraining for transfer learning. Robustness is achieved thanks to a new embedding strategy according to which the watermark message is spread across a number of fixed weights, whose position depends on a secret key. The weights hosting the watermark are set prior to training, and are left unchanged throughout the training procedure. The distribution of the weights carrying the watermark is theoretically optimised to make sure that they are indistinguishable from the non-watermarked weights, while at the same time setting their amplitude to as large as possible values to improve robustness against retraining. We carried out several experiments demonstrating the capability of the proposed scheme to provide high payloads with no significant impact on network accuracy, at the same time ensuring excellent robustness against network modifications an re-use, including retraining and transfer learning.


翻译:已经提议将水标记作为保护深神经网络知识产权的一种方法,并跟踪其使用情况。已经提议了几种方法,将水标记嵌入网络的可训练参数(白箱水标记)或网络在与具体投入(黑箱水标记)的对接中实施的输入输出绘图中。在这两种情况下,在微调、模型压缩、甚至转让学习方面实现稳健,这是研究人员面临的最困难的挑战之一。在本文中,我们建议采用一种新的白色箱、多位水标记算法,具有强健的特性,包括防止再培训学习学习的强健性。之所以能够实现水标记,是因为采用了一种新的嵌入战略,即水标记信息散布于若干固定重量,其位置取决于一个秘密钥匙。同一水标记的重量是在培训之前设定的,并且在整个培训过程中保持不变。装有水标记的重量的分布是理论上的优化,以确保这些重量与非水标记的重量不相冲突,包括防止再培训的强健性再定性。我们提出了一系列的高度再培训计划,同时在确保高度的学习能力方面进行可能的调整。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
19+阅读 · 2018年5月17日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员