Trust region methods are widely applied in single-agent reinforcement learning problems due to their monotonic performance-improvement guarantee at every iteration. Nonetheless, when applied in multi-agent settings, the guarantee of trust region methods no longer holds because an agent's payoff is also affected by other agents' adaptive behaviors. To tackle this problem, we conduct a game-theoretical analysis in the policy space, and propose a multi-agent trust region learning method (MATRL), which enables trust region optimization for multi-agent learning. Specifically, MATRL finds a stable improvement direction that is guided by the solution concept of Nash equilibrium at the meta-game level. We derive the monotonic improvement guarantee in multi-agent settings and empirically show the local convergence of MATRL to stable fixed points in the two-player rotational differential game. To test our method, we evaluate MATRL in both discrete and continuous multiplayer general-sum games including checker and switch grid worlds, multi-agent MuJoCo, and Atari games. Results suggest that MATRL significantly outperforms strong multi-agent reinforcement learning baselines.


翻译:由于单一试剂强化学习的单一性能改进保证,信任区域方法被广泛应用于单一试剂强化学习问题。然而,在多试剂环境下应用时,信任区域方法的保障不再有效,因为代理人的回报也受到其他代理人的适应行为的影响。为了解决这一问题,我们在政策空间中进行游戏理论分析,并提议一种多试剂信任区域学习方法(MATRL),使信任区域能够优化多试剂学习。具体地说,MATRL找到了一个稳定的改进方向,该方向以元游戏一级纳什平衡的解决方案概念为指导。我们在多试剂环境中获得单一性改进保证,并从经验上表明MATRL与两玩轮转游戏中固定点的本地趋同。为了测试我们的方法,我们在离散和连续的多玩者普通游戏中评价MATRL,包括核对器和交换网格世界、多试剂 MuJoco和Atari游戏。结果显示,MATRL大大超出强化多试剂学习基线。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
40+阅读 · 2021年2月12日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关资讯
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员