Current literature suggests that alignment faking (deceptive alignment) is an emergent property of large language models. We present the first empirical evidence that a small instruction-tuned model, specifically LLaMA 3 8B, can exhibit alignment faking. We further show that prompt-only interventions, including deontological moral framing and scratchpad reasoning, significantly reduce this behavior without modifying model internals. This challenges the assumption that prompt-based ethics are trivial and that deceptive alignment requires scale. We introduce a taxonomy distinguishing shallow deception, shaped by context and suppressible through prompting, from deep deception, which reflects persistent, goal-driven misalignment. Our findings refine the understanding of deception in language models and underscore the need for alignment evaluations across model sizes and deployment settings.


翻译:现有文献表明,虚假对齐(欺骗性对齐)是大语言模型的一种涌现特性。我们首次提供了实证证据,证明一个小型指令微调模型(具体为LLaMA 3 8B)能够表现出虚假对齐行为。我们进一步证明,仅通过提示干预(包括道义伦理框架提示和思维链推理)即可显著减少此类行为,而无需修改模型内部结构。这一发现挑战了“基于提示的伦理干预是微不足道的”以及“欺骗性对齐需要模型达到一定规模”的假设。我们提出了一个分类法,用以区分浅层欺骗(受上下文影响且可通过提示抑制)与深层欺骗(反映持久性、目标驱动的未对齐状态)。我们的研究结果深化了对语言模型中欺骗行为的理解,并强调了在不同模型规模和部署场景下进行对齐评估的必要性。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员