Nonconvex minimax problems have attracted wide attention in machine learning, signal processing and many other fields in recent years. In this paper, we propose a primal dual alternating proximal gradient (PDAPG) algorithm and a primal dual proximal gradient (PDPG-L) algorithm for solving nonsmooth nonconvex-strongly concave and nonconvex-linear minimax problems with coupled linear constraints, respectively. The corresponding iteration complexity of the two algorithms are proved to be $\mathcal{O}\left( \varepsilon ^{-2} \right)$ and $\mathcal{O}\left( \varepsilon ^{-3} \right)$ to reach an $\varepsilon$-stationary point, respectively. To our knowledge, they are the first two algorithms with iteration complexity guarantee for solving the two classes of minimax problems.
翻译:近些年来,非混凝土微缩轴问题在机器学习、 信号处理和其他许多领域引起了广泛的注意。 在本文中, 我们提出一种原始的双交近似梯度( PDAPG) 算法和一种原始的双交近似梯度( PDPG-L) 算法, 分别用于解决非双交非混凝土和非相联线性微缩轴问题。 据我们所知, 这两种算法的相应迭代复杂性被证明是 $\ mathcal{ O ⁇ ⁇ left (\ varepsilon ⁇ -2}\ right) $ 和 $\ mathcal{ left (\ varepsilon ⁇ - 3}\right), 以便分别达到 $\varepslon $ 静止点。 据我们所知, 它们是解决两类小负轴问题的前两种具有迭联复杂性的算法。