We propose a method for Saimaa ringed seal (Pusa hispida saimensis) re-identification. Access to large image volumes through camera trapping and crowdsourcing provides novel possibilities for animal monitoring and conservation and calls for automatic methods for analysis, in particular, when re-identifying individual animals from the images. The proposed method NOvel Ringed seal re-identification by Pelage Pattern Aggregation (NORPPA) utilizes the permanent and unique pelage pattern of Saimaa ringed seals and content-based image retrieval techniques. First, the query image is preprocessed, and each seal instance is segmented. Next, the seal's pelage pattern is extracted using a U-net encoder-decoder based method. Then, CNN-based affine invariant features are embedded and aggregated into Fisher Vectors. Finally, the cosine distance between the Fisher Vectors is used to find the best match from a database of known individuals. We perform extensive experiments of various modifications of the method on a new challenging Saimaa ringed seals re-identification dataset. The proposed method is shown to produce the best re-identification accuracy on our dataset in comparisons with alternative approaches.
翻译:我们建议采用一个方法来重新确定Saimaa环斑海豹(Pusa hispida samensis)的重新身份。通过摄像陷阱和众包获取大比例图像为动物监测和保护提供了新的可能性,并要求采用自动分析方法,特别是在从图像中重新识别个别动物时。拟议的方法NOvel环斑海豹通过Pelage模式聚合(NORPPA)重新识别,使用Saimaa环斑海豹的永久和独特的断层模式以及基于内容的图像检索技术。首先,查询图像是预处理的,每个海豹实例是分割的。下一步,海豹的毛状模式是使用基于 U-net 编码器脱钩法的方法提取的。然后,基于CNN的虫形变异性特征被嵌入并汇总到渔业矢量器中。最后,渔业矢量器之间的孔距离被用来找到已知个人数据库的最佳匹配点。我们广泛试验了对方法的各种修改方法,即对具有挑战性的新Simaa 环斑海豹再识别数据的替代数据集进行不同的比较。拟议方法展示了最佳的精确度,以生成数据。