To advance quality assurance in the welding process, this study presents a robust deep learning model that enables the prediction of two critical welds Key Performance Characteristics (KPCs): welding depth and average pore volume. In the proposed approach, a comprehensive range of laser welding Key Input Characteristics (KICs) is utilized, including welding beam geometries, welding feed rates, path repetitions for weld beam geometries, and bright light weld ratios for all paths, all of which were obtained from hairpin welding experiments. Two deep learning networks are employed with multiple hidden dense layers and linear activation functions to showcase the capabilities of deep neural networks in capturing the intricate nonlinear connections inherent within welding KPCs and KICs. Applying deep learning networks to the small numerical experimental hairpin welding dataset has shown promising results, achieving Mean Absolute Error (MAE) values as low as 0.1079 for predicting welding depth and 0.0641 for average pore volume. Additionally, the validity verification demonstrates the reliability of the proposed method. This, in turn, promises significant advantages in controlling welding outcomes, moving beyond the current trend of relying merely on monitoring for defect classification.
翻译:暂无翻译