Machine learning models with both good predictability and high interpretability are crucial for decision support systems. Linear regression is one of the most interpretable prediction models. However, the linearity in a simple linear regression worsens its predictability. In this work, we introduce a locally adaptive interpretable regression (LoAIR). In LoAIR, a metamodel parameterized by neural networks predicts percentile of a Gaussian distribution for the regression coefficients for a rapid adaptation. Our experimental results on public benchmark datasets show that our model not only achieves comparable or better predictive performance than the other state-of-the-art baselines but also discovers some interesting relationships between input and target variables such as a parabolic relationship between CO2 emissions and Gross National Product (GNP). Therefore, LoAIR is a step towards bridging the gap between econometrics, statistics, and machine learning by improving the predictive ability of linear regression without depreciating its interpretability.
翻译:具有良好可预测性和高度可解释性的机器学习模型对于决策支持系统至关重要。 线性回归是最能解释的预测模型之一。 但是,简单线性回归中的线性回归线性恶化了它的可预测性。 在这项工作中,我们引入了一种可本地适应的可解释回归(LoAIR ) 。 在 LoAIR 中,由神经网络设定的元模型参数预测了高斯的回归系数分布百分率,用于快速适应。 我们在公共基准数据集上的实验结果表明,我们的模型不仅取得了与其他最先进的基线相比的可比较或更好的预测性能,而且还发现了投入和目标变量之间的一些有趣的关系,比如二氧化碳排放量与国民生产总值(国产总值)之间的对立关系。 因此, LoAIR 通过提高线性回归的预测能力,而不对其可解释性进行减损,从而缩小生态计量、统计和机器学习之间的差距。