Estimating causal effects from observational data in the presence of latent variables sometimes leads to spurious relationships which can be misconceived as causal. This is an important issue in many fields such as finance and climate science. We propose Sequential Causal Effect Variational Autoencoder (SCEVAE), a novel method for time series causality analysis under hidden confounding. It is based on the CEVAE framework and recurrent neural networks. The causal link's intensity of the confounded variables is calculated by using direct causal criteria based on Pearl's do-calculus. We show the efficacy of SCEVAE by applying it to synthetic datasets with both linear and nonlinear causal links. Furthermore, we apply our method to real aerosol-cloud-climate observation data. We compare our approach to a time series deconfounding method with and without substitute confounders on the synthetic data. We demonstrate that our method performs better by comparing both methods to the ground truth. In the case of real data, we use the expert knowledge of causal links and show how the use of correct proxy variables aids data reconstruction.
翻译:在潜伏变量存在的情况下,对观测数据的因果关系进行估计,有时会导致虚假的关系,这种关系可能被误解为因果关系。这是许多领域,如金融和气候科学中的一个重要问题。我们建议采用时间序列因果关系分析的新方法,即隐蔽的混淆下的时间序列因果关系分析方法(SCEVAE),它以CEVAE框架和经常性神经网络为基础。根据Pearl's Do-culus的计算结果,通过使用直接因果关系标准来计算混结变量的因果关系强度。我们通过将SCEVAE应用于具有线性和非线性因果关系的合成数据集来显示 SCEVAE的功效。此外,我们用我们的方法对真实的气溶胶-球-气候观测数据应用了我们的方法。我们将我们的方法与一个时间序列的分解方法进行比较,而不用合成数据上的解析器进行替代。我们证明我们的方法通过将这两种方法与地面数据进行比较来进行更好的表现。在真实数据中,我们使用对因果关系的专家知识,并展示使用正确的代用替代变量如何帮助数据重建。