Non-verbal behavior is essential for embodied agents like social robots, virtual avatars, and digital humans. Existing behavior authoring approaches including keyframe animation and motion capture are too expensive to use when there are numerous utterances requiring gestures. Automatic generation methods show promising results, but their output quality is not satisfactory yet, and it is hard to modify outputs as a gesture designer wants. We introduce a new gesture generation toolkit, named SGToolkit, which gives a higher quality output than automatic methods and is more efficient than manual authoring. For the toolkit, we propose a neural generative model that synthesizes gestures from speech and accommodates fine-level pose controls and coarse-level style controls from users. The user study with 24 participants showed that the toolkit is favorable over manual authoring, and the generated gestures were also human-like and appropriate to input speech. The SGToolkit is platform agnostic, and the code is available at https://github.com/ai4r/SGToolkit.
翻译:非言语行为对于社会机器人、虚拟动画和数字人等体现代理人至关重要。 现有的行为写作方法, 包括键盘动画和动作捕捉等, 在许多需要手势的言辞中, 使用成本太高, 无法使用。 自动生成方法显示有希望的结果, 但其产出质量尚不令人满意, 很难修改产出, 以一个手动设计师的意愿来修改。 我们引入了一个新的手动新一代工具包, 名为SGToolkit, 其产出质量高于自动方法, 比手工制作更有效。 对于工具箱, 我们提议了一个神经基因化模型, 以合成演讲中的手势, 并接受用户的精细姿势控制和粗俗风格控制。 用户对24名参与者的研究显示, 工具箱比手动作者更有利, 所产生的手动手动手动也与人相似, 适合输入演讲。 SGToolkit 是平台, 并且代码可以在 https://github. com/ ai4r/ SGToolkit 上查阅 。