Plant species identification is time consuming, costly, and requires lots of efforts, and expertise knowledge. In recent, many researchers use deep learning methods to classify plants directly using plant images. While deep learning models have achieved a great success, the lack of interpretability limit their widespread application. To overcome this, we explore the use of interpretable, measurable and computer-aided features extracted from plant leaf images. Image processing is one of the most challenging, and crucial steps in feature-extraction. The purpose of image processing is to improve the leaf image by removing undesired distortion. The main image processing steps of our algorithm involves: i) Convert original image to RGB (Red-Green-Blue) image, ii) Gray scaling, iii) Gaussian smoothing, iv) Binary thresholding, v) Remove stalk, vi) Closing holes, and vii) Resize image. The next step after image processing is to extract features from plant leaf images. We introduced 52 computationally efficient features to classify plant species. These features are mainly classified into four groups as: i) shape-based features, ii) color-based features, iii) texture-based features, and iv) scagnostic features. Length, width, area, texture correlation, monotonicity and scagnostics are to name few of them. We explore the ability of features to discriminate the classes of interest under supervised learning and unsupervised learning settings. For that, supervised dimensionality reduction technique, Linear Discriminant Analysis (LDA), and unsupervised dimensionality reduction technique, Principal Component Analysis (PCA) are used to convert and visualize the images from digital-image space to feature space. The results show that the features are sufficient to discriminate the classes of interest under both supervised and unsupervised learning settings.
翻译:植物物种的识别需要时间、花费,需要大量的努力和专门知识。最近,许多研究人员使用深层次的学习方法,直接用植物图像对植物进行分类。虽然深层次的学习模型取得了巨大成功,但缺乏解释性限制了它们的广泛应用。要克服这一点,我们探索如何使用从植物叶图像中提取的可解释、可测量和计算机辅助特征。图像处理是最具有挑战性的,也是地貌变异中的关键步骤之一。图像处理的目的是通过去除不理想的扭曲来改进叶子图像。我们算法的主要图像处理步骤包括:i)将原始图像转换成 RGB (RED-绿色线) 图像,ii) 灰色缩缩缩缩缩,iv) 平,iv) Binarary 地变缩,v) 移除尾刻孔,vi) 缩放图像。图像处理的下一步是提取植物叶图像的特征。我们引入了52种高效的计算特征,以对植物物种进行分类。这些特征主要分为四组:i) 形状的特征,基于S-ii) 颜色-lie-lien recal-lical alial ex ex ex ex ex ex dal dal dal drial dal drial dal disal 和基于的图像特性的特性的特性, 和深层的特性, 和底部的变变变变变变变变变变变变变变变变变变变的图像的图像的特性, 和变变变变的变的变变变的变的变的变的变的变的变的变的变的变变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变