The paper is concerned with classic kernel interpolation methods, in addition to approximation methods that are augmented by gradient measurements. To apply kernel interpolation using radial basis functions (RBFs) in a stable way, we propose a type of quasi-optimal interpolation points, searching from a large set of \textit{candidate} points, using a procedure similar to designing Fekete points or power function maximizing points that use pivot from a Cholesky decomposition. The proposed quasi-optimal points result in a smaller condition number, and thus mitigates the instability of the interpolation procedure when the number of points becomes large. Applications to parametric uncertainty quantification are presented, and it is shown that the proposed interpolation method can outperform sparse grid methods in many interesting cases. We also demonstrate the new procedure can be applied to constructing gradient-enhanced Gaussian process emulators.
翻译:本文关注的是典型的内核内插方法,以及借助梯度测量而增强的近似方法。为了以稳定的方式使用辐射基函数(RBFs)来应用内核内插,我们建议了一种准最佳的内插点,从大量的 \ textit{candidate} 点中搜索,使用类似于设计 Fekete 点的程序或电源函数最大化点,使用Cholesky 分解法的脉冲。提议的准最佳点导致条件数减少,从而在点数大时减轻内插程序的不稳定性。提出了对参数不确定性量化的应用,并表明拟议的内插方法在许多有趣的案例中可以超越稀有的电网方法。我们还展示了新的程序可用于建造梯度增强高斯进程模拟器。