A dynamic mass-transport method is proposed for approximately solving the Poisson-Nernst-Planck(PNP) equations. The semi-discrete scheme based on the JKO type variational formulation naturally enforces solution positivity and the energy law as for the continuous PNP system. The fully discrete scheme is further formulated as a constrained minimization problem, shown to be solvable, and satisfy all three solution properties (mass conservation, positivity and energy dissipation) independent of time step size or the spatial mesh size. Numerical experiments are conducted to validate convergence of the computed solutions and verify the structure preserving property of the proposed scheme.
翻译:为了大致解决Poisson-Nernst-Planck(PNP)等式,提出了动态的大众运输方法。基于JKO型变异配方的半分解办法自然地强制实施解决办法的切合性和能源法,作为连续的PNP系统。完全独立的办法进一步拟订为限制最小化的问题,证明是可溶解的,并满足所有三种解决办法的特性(质量保护、阳性和能量消散),而不论时间步数大小或空间网格大小。进行了数字实验,以验证计算解决办法的趋同性,并核实拟议办法的结构保护特性。