We introduce two models of space-bounded quantum interactive proof systems, ${\sf QIPL}$ and ${\sf QIP_{\rm U}L}$. The ${\sf QIP_{\rm U}L}$ model, a space-bounded variant of quantum interactive proofs (${\sf QIP}$) introduced by Watrous (CC 2003) and Kitaev and Watrous (STOC 2000), restricts verifier actions to unitary circuits. In contrast, ${\sf QIPL}$ allows logarithmically many intermediate measurements per verifier action (with a high-concentration condition on yes instances), making it the weakest model that encompasses the classical model of Condon and Ladner (JCSS 1995). We characterize the computational power of ${\sf QIPL}$ and ${\sf QIP_{\rm U}L}$. When the message number $m$ is polynomially bounded, ${\sf QIP_{\rm U}L} \subsetneq {\sf QIPL}$ unless ${\sf P} = {\sf NP}$: - ${\sf QIPL}$ exactly characterizes ${\sf NP}$. - ${\sf QIP_{\rm U}L}$ is contained in ${\sf P}$ and contains ${\sf SAC}^1 \cup {\sf BQL}$, where ${\sf SAC}^1$ denotes problems solvable by classical logarithmic-depth, semi-unbounded fan-in circuits. However, this distinction vanishes when $m$ is constant. Our results further indicate that intermediate measurements uniquely impact space-bounded quantum interactive proofs, unlike in space-bounded quantum computation, where ${\sf BQL}={\sf BQ_{\rm U}L}$. We also introduce space-bounded unitary quantum statistical zero-knowledge (${\sf QSZK_{\rm U}L}$), a specific form of ${\sf QIP_{\rm U}L}$ proof systems with statistical zero-knowledge against any verifier. This class is a space-bounded variant of quantum statistical zero-knowledge (${\sf QSZK}$) defined by Watrous (SICOMP 2009). We prove that ${\sf QSZK_{\rm U}L} = {\sf BQL}$, implying that the statistical zero-knowledge property negates the computational advantage typically gained from the interaction.
翻译:暂无翻译