The distance covariance of Sz\'ekely, et al. [23] and Sz\'ekely and Rizzo [21], a powerful measure of dependence between sets of multivariate random variables, has the crucial feature that it equals zero if and only if the sets are mutually independent. Hence the distance covariance can be applied to multivariate data to detect arbitrary types of non-linear associations between sets of variables. We provide in this article a basic, albeit rigorous, introductory treatment of the distance covariance. Our investigations yield an approach that can be used as the foundation for presentation of this important and timely topic even in advanced undergraduate- or junior graduate-level courses on mathematical statistics.
翻译:Sz\'ekely, et al. [23] 和 Sz\'ekely 和 Rizzo [21] 之间的距离是衡量多变随机变量之间依赖性的有力尺度,其关键特征是,如果并且只有在这些变量是相互独立的情况下,它等于零。因此,这种距离共变可以适用于多变数据,以检测各变量之间的任意非线性联系。我们在本条中对距离共变提供了基本但严格的介绍性处理。我们的调查产生了一种方法,即使是在高级本科或初级研究生数学统计课程中,也可以作为介绍这一重要和及时的主题的基础。