Symbol-pair codes introduced by Cassuto and Blaum in 2010 are designed to protect against the pair errors in symbol-pair read channels. One of the central themes in symbol-error correction is the construction of maximal distance separable (MDS) symbol-pair codes that possess the largest possible pair-error correcting performance. Based on repeated-root cyclic codes, we construct two classes of MDS symbol-pair codes for more general generator polynomials and also give a new class of almost MDS (AMDS) symbol-pair codes with the length $lp$. In addition, we derive all MDS and AMDS symbol-pair codes with length $3p$, when the degree of the generator polynomials is no more than 10. The main results are obtained by determining the solutions of certain equations over finite fields.
翻译:Cassuto 和 Blaum 2010 年推出的符号-光标代码旨在防范符号-光学读取频道中的对称错误,符号-光学校正的中心主题之一是构建最大距离分解符号-光学代码(MDS),这些代码具有最大可能的最大双轨校正性能。根据反复的根根代码,我们为更普通的发电机多元体构建了两类MDS符号-光学代码(MDS),并给出了近乎MDS(AMDS)符号-光学代码的新类别,其长度为$lp$。此外,当发电机多色体的程度不超过10时,我们用长度为3p$的长度生成所有MDS和AMDS符号-光学代码。主要成果是通过确定某些公式的解决方案在有限域上取得。