We consider the problem of assigning agents to resources under the two-sided preference list model where resources specify an upper-quota and a lower-quota, that is, respectively the maximum and minimum number of agents that can be assigned to it. Different notions of optimality including envy-freeness and relaxed stability are investigated for this setting and the goal is to compute a largest optimal matching. Krishnaa et al. [SAGT 2020] show that in this setting, the problem of computing a maximum size envy-free matching (MAXEFM) or a maximum size relaxed stable matching (MAXRSM) is not approximable within a certain constant factor unless P = NP. This work is the first investigation of parameterized complexity of MAXEFM and MAXRSM. We show that MAXEFM is W [1]-hard and MAXRSM is para-NP-hard when parameterized on several natural parameters derived from the instance. We present kernelization results and FPT algorithms for both problems parameterized on other relevant parameters.
翻译:我们考虑了根据双面优惠清单模式向资源分配代理商的问题,在这种模式下,资源指定了上限和低配额,即可分配的代理商的最大数目和最低数目,即最高数目和最低数目,即可分配给该模式的代理商。对这一设置的不同最佳性概念,包括不妒忌和放松的稳定性进行了调查,目的是计算最大的最佳匹配。克利须那等人[SAGT 表明,在这一设置下,计算最大规模的无嫉妒匹配(MAXEFM)或最大规模的松散稳定匹配(MAXRSM)的问题,在一定不变系数内是不可接近的,除非P=NP。这项工作是对MAXEFM和MAXRSM的参数复杂性进行的第一次调查。我们表明,MAXEFM是W[1-hard],MAXRSM在根据从中得出的若干自然参数进行参数参数的参数参数参数比较时是半NP。我们介绍了这两个问题的内化结果和FPT算法。