We examine the problem of transmission control, i.e., when to transmit, in distributed wireless communications networks through the lens of multi-agent reinforcement learning. Most other works using reinforcement learning to control or schedule transmissions use some centralized control mechanism, whereas our approach is fully distributed. Each transmitter node is an independent reinforcement learning agent and does not have direct knowledge of the actions taken by other agents. We consider the case where only a subset of agents can successfully transmit at a time, so each agent must learn to act cooperatively with other agents. An agent may decide to transmit a certain number of steps into the future, but this decision is not communicated to the other agents, so it the task of the individual agents to attempt to transmit at appropriate times. We achieve this collaborative behavior through studying the effects of different actions spaces. We are agnostic to the physical layer, which makes our approach applicable to many types of networks. We submit that approaches similar to ours may be useful in other domains that use multi-agent reinforcement learning with independent agents.
翻译:我们研究传输控制问题,即何时通过多试剂强化学习的镜头在分布式无线通信网络中传输。其他多数工作使用强化学习来控制或调度传输,使用某种集中控制机制,而我们的方法是完全分布的。每个发射节点都是一个独立的强化学习剂,对其它代理器的行动并不直接了解。我们考虑的情况是,只有一组代理人能够一次成功传输,因此每个代理人必须学会与其他代理人合作。代理人可能决定向未来传递一定数量的步骤,但这一决定没有传达给其他代理人,因此,单个代理人的任务是在适当的时候尝试传输。我们通过研究不同行动空间的效果来实现这种协作行为。我们对物理层是不可忽视的,这使得我们的方法适用于许多类型的网络。我们提出,与其他代理人相似的方法在使用多试剂强化学习的独立代理人的其他领域可能有用。