Dynamic control of a soft-body robot to deliver complex behaviors with low-dimensional actuation inputs is challenging. In this paper, we present a computational approach to automatically generate versatile, underactuated control policies that drives soft-bodied machines with complicated structures and nonlinear dynamics. Our target application is focused on the autonomous control of a soft multicopter, featured by its elastic material components, non-conventional shapes, and asymmetric rotor layouts, to precisely deliver compliant deformation and agile locomotion. The central piece of our approach lies in a lightweight neural surrogate model to identify and predict the temporal evolution of a set of geometric variables characterizing an elastic soft body. This physics-based learning model is further integrated into a Linear Quadratic Regulator (LQR) control loop enhanced by a novel online fixed-point relinearization scheme to accommodate the dynamic body balance, allowing an aggressive reduction of the computational overhead caused by the conventional full-scale sensing-simulation-control workflow. We demonstrate the efficacy of our approach by generating controllers for a broad spectrum of customized soft multicopter designs and testing them in a high-fidelity physics simulation environment. The control algorithm enables the multicopters to perform a variety of tasks, including hovering, trajectory tracking, cruising and active deforming.


翻译:对软体机器人进行动态控制,以提供具有低维振动投入的复杂行为,这具有挑战性。在本文中,我们提出了一个计算方法,以自动生成多功能、低活性控制政策,驱动具有复杂结构和非线性动态的软体机器。我们的目标应用侧重于软体多立体机的自动控制,以其弹性材料组件、非常规形状和不对称转子布局为特点,以准确提供符合性畸形和敏捷移动。我们的方法的核心部分在于一个轻量级神经代金模型,用以识别和预测一组具有弹性软体特征的几何变量的瞬时演变。基于物理的学习模型被进一步整合到一个线性夸拉式管理器控制环中,通过一个新的在线固定点再线化计划来强化它,以适应动态体平衡,从而能够积极减少由常规的全面感测模拟控制工作流程造成的计算间接费用。我们展示了我们的方法的功效,方法是为一个定制的软软性多级软机率变量控制器的宽频谱化多级跟踪模型设计,并测试它们进行高级机型的模拟模型分析。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【机器学习术语宝典】机器学习中英文术语表
专知会员服务
60+阅读 · 2020年7月12日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
73+阅读 · 2020年5月5日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
已删除
将门创投
4+阅读 · 2019年8月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Rule-based Optimal Control for Autonomous Driving
Arxiv
0+阅读 · 2021年1月14日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年8月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员